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Abstract— Recent trends show that wearable devices with
high-range inertial sensors are actively being used for outdoor
activities. The paper describes our developed sports analytics
engine used for self-learning and/or coach-assisted training for
swing-based games like tennis, golf, etc. by utilizing rich set of
data collected from these wearable sensors. The sports analytics
engine for tennis uses techniques based on modified Pan-
Tompkins algorithm for detecting the shot and then uses time-
warping based hierarchical shot classifier which uses Dynamic
Time Warping (DTW) at first level (forehand, backhand and
serve) and Quaternion Dynamic Time Warping (QDTW) at
second level (slice and non-slice). Major challenges included
distinguishing shots from noise in sensor data, classifying the
shots based on information only from wrist of player and
capturing the various playing styles across different players.
Based on efficacy of the developed engine, we foresee wider
usages of the proposed techniques in developing learning
applications for swing-based sports.

I. INTRODUCTION

With latest wearables having embedded inertial sensors,
for gaining insights into swing-based games (like tennis,
golf etc.), it is critical to develop methods that capture
intricacies of hand movement for distinguishing each shot
type(eg. Forehand Slice, Serve etc.). We have developed an
analytics engine for tennis which processes(detects and clas-
sifies shots) sensor data from a wrist-worn wearable, provides
game statistics, assesses player’s performance and suggests
areas of improvement for self-learning and/or coach-assisted
training. Shots were detected with 99% accuracy using
modified Pan Tompkin’s algorithm [1]. We emphasize that
Quaternions based Dynamic Time Warping (QDTW) [2]
technique provides an efficient means for characterizing
different shot/swing types and have achieved 90% clas-
sification accuracy. Approaches to derive game features
like racquet speed (PS Application No. 3927/CHE/2015),
trajectory, consistency etc. are proposed using information
from shot detection and classification modules. Based on
characterization of a player’s shots and comparing them with
professional’s, we define the concept of consistency in shots
and provide recommendations on inconsistent areas and wrist
rotation. Such game analysis provides insights into his/her
playing style and helps the player improve his/her game
strategy.

A. Related Work

Recent trends show that inertial sensor data from wear-
ables are being used for sports application [3], [4]. The work

reported in [5] discusses detection of tennis shots based on
peaks in accelerometer data and classification into forehand,
backhand and serves using machine learning on sensor data
from wrist. Various techniques for activity recognition for
sports applications etc. using inertial sensors are discussed
in [6]. In [7], techniques for detecting incorrect parts in a
tennis/squash swing based on machine learning have been
discussed. Other work on training a player in tennis in-
clude [8], [9], [10], where the authors discuss using multiple
sensors or video analysis for recommending improvements
in a player’s game. Our proposed approach differs from
them as we perform sub-classification of tennis shots (along
with forehand, backhand and serve classification) and extract
game features based on sensors attached only to the wrist of
a player.

II. EFFICIENT CHARACTERIZATION OF TENNIS SHOTS

The system design of sports analytics engine is shown in
Fig. 1. The 3-dimensional accelerometer(ax, ay, az) and gy-
roscope data were collected from inertial sensors embedded
in a wearable worn on wrist. The shot detection, identifies
the shot region from the sensor data, which is then used in
traininig/classifying shot types as well as for game analysis.

Fig. 1. System Design
III. SHOT DETECTION

The gyroscope and accelerometer data collected from the
players have shot patterns as well as noise due to sensor dis-
turbance and player movements. Pan Tomkin’s algorithm [1]
better suits to isolate shot signal from noise. As shown in
Fig. 2, accelerometer signal consists of a sudden spike during
a shot.

The x-axis accelerometer data is differentiated and then
squared to magnify the output. Subsequently, we perform
moving window integration with window size of three times
the sampling rate and identify potential shot impact region
using thresholding. Impact point of the shot region is ex-
tracted by finding global maxima. The start point and end
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point are detected using minima search in backward and
forward directions of buffer window, respectively. Since the
buffer is processed only if the potential shot impacts were
detected, this method is much faster than windowed pattern
matching.

Fig. 2. Shot Detection Steps

IV. TENNIS SHOT CLASSIFIER

The different shot types in tennis are forehand, backhand
and serve, categorized further into sub-shot types - flat,
topspin and slice. We utilized inertial sensor data to create
ideal models/templates for the different shot types and sub-
shot types. We then use these templates in our classifier,
called QDTW classifier [11], for classifying test shots. It
is a two level hierarchical classifier where at first level,
classical DTW is applied on accelerometer and gyroscope
signals to classify a shot as a forehand, backhand or serve.
At second level, we have different templates for sub-types
within forehand and backhand and QDTW is applied on
quaternion time series calculated for test shots to classify
them into sub-shot type.

A. Orientation Estimation using Gyroscope Output

Quaternion (4-dimensional vector{q0, q1, q2, q3}) cor-
responding to the first sample of the shot is taken as the
reference quaternion with values (1, 0, 0, 0). We calculate
unit quaternions for complete shot by utilizing gyroscope
values and timestamps [12].

Fig. 3 shows the quaternion values for forehand flat and
slice.

Fig. 3. Quaternions for a forehand flat shot and forehand slice shot of a
professional. As it can be seen that the differences in the quaternion values
for sub-shot types are minor, we use QDTW rather than classical DTW to
capture these subtle differences in the quaternions. domain.

B. QDTW classifier training module

Input to the trainer consists of sets of shots (sensor data
and timestamps) labeled with their shot types. To obtain

templates for the first level, accelerometer and gyroscope
data are normalized based on maximum absolute value found
in respective axes data respectively. For the second level,
quaternions are calculated for all input shots. The steps
followed to obtain template(s) corresponding to each shot
type at the two classifier levels are:

1) For the first and second level, DTW costs based on
Manhattan distance for all sensor axes individually and
QDTW costs [2] are calculated among all shots of a
shot type. We have termed the final cost when QDTW
is performed between two shots as Q-distance.

2) K-median clustering is performed for respective levels
on magnitude of all gyroscope axes costs and QDTW
costs. Medians of only those clusters containing at least
40% or more of total shots of a shot type are used as
templates and corresponding cluster radius is used as
threshold for classification.

C. QDTW classifier validation module

A shot detected from the detection module is input to
the validation module. First, DTW is performed between
the shot and the templates at the first level to classify a
shot as forehand, backhand or serve. In case of forehand or
backhand shot, this output is passed to second level where
QDTW is performed between shot and existing sub-type
templates at second level to decide flat, topspin or slice. The
resultant shot type is determined based on the minimum cost
obtained among all costs lying within thresholds, otherwise
it is determined based on minimum cost among all calculated
costs.

V. GAME ANALYSIS

Based on data received from sensors, we aim to summa-
rize player’s game. It is challenging to derive key aspects
like spin, speed and trajectory of serve using only wrist-
worn sensor data. Further, serve and return-shot are also an
important part while competing against each other.

For a single player data, each session is segregated into
a series of rallies. Rally is detected as a set of shots
played between two successful serves. Details of last shot
of each rally help the player to learn differentiating factors
which may have led him/her or opponent to gain points.
We summarize the session into key performance parameters
e.g. total number of shots, shot type distribution, number of
serves and second serves, speed range, dominant shot type,
total playing time, longest rally etc.

Table I summarizes a game played with opponent for 7
min and 24 secs. Both players played 68 shots. Key perfor-
mance indicators are summarized in the table.

For each session, we define key parameters that provide
basic insights to a player and suggest recommendations for
improving the game.

A. Racquet Speed

Racquet head speed is calculated using gyroscope data
from wearable. It is assumed that while playing a shot,
hand and racquet behaves like a rigid body and rotates with



TABLE I : GAME STATISTICS

Parameters Values/Types
Total Play Time 444.56 sec
Active Time 221.34 Sec
Resting Time 223.22 Sec
Total Shots 68
No of Rallies 7
Longest Rally 45.11 Sec (13 Shots)
First Serves 4
Second Serves 3
Dominant First Serve Topspin
Dominant Second Serve Flat
Dominant return Forehand Topspin
Max Shot Speed 62.56 mph
Average Shot Speed 43.82 mph
Min Shot Speed 28.21 mph
Shot Rate 18 shots/min
Dominant Shot Backhand Slice

same angular velocity. We model this system (racquet and
hand) as a rigid body rotating around shoulder joint of the
player (Fig. 4(a)). We estimate angle between upper arm
and forearm(θ1), and angle between forearm and racquet(θ2)
(Fig. 4(b)). For different type of shots, θ1 and θ2 range
between [130◦, 180◦] and [100◦, 180◦] respectively based
on experimental observations.

Racquet head speed is estimated as follows:

A′ = A
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′

A )

R
′
=
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where A is arm length; R is racquet length; A′ is effective
arm length; R′ is effective radius of rotation and ω is angular
rotation rate about shoulder joint.

Using effective radius of rotation, angular velocity around
impact point is converted to racquet head speed (Fig. 4).

ω =
√
gy2 + gz2

V = ω ∗R′

where gy is angular rate about local y-axis, gz is angular rate
about local z-axis, and V is racquet head speed.

Fig. 4. (a) Estimated Rigid Body Model, (b) Swing Model

Considering ranges of θ1 and θ2, this estimation comes
within limit of ±5mph.

B. Insights on Shot Consistency

We provide 2 means of ascertaining consistency of a shot-
type: 1. Q-distance and 2. Shot-deviation.

1) Q-distance based: If a player plays all his shots of
the same shot-type in a very similar way, player’s shots are
said to be consistent, whereas if a player plays shots of the
same shot type with the wrist movement being different for
every other shot, the player’s shots are said to be inconsistent.
Charts as in Fig. 5 are called consistency plots. We perform
k-median clustering for all shots of a shot type of a player
with k = 1 and find the median shot. The center of the
consistency plot represents this median shot and all other
shots are then plotted in the chart at their corresponding Q-
distance from the median shot.

Fig. 5. Q-Distance based Consistency of a Shot-type

2) Shot-Deviation Based: The standard deviation plot
derived from gyroscope sequences of all shots of a specific
type provides visual cues on determining overall consistency
of the shot with that of a professional player. As the
impact causes jerks in sensor values, we visualize a spike
at the center of the plot and comparatively low deviation
values at all other points when a player is consistent in
his shots, as shown in Fig. 6. Multiple spikes or multiple
positions of spikes indicate inconsistency in where a player
is impacting the ball during the course of his swing. On
similar lines, a higher deviation in the follow-through region
implies inconsistency in follow-through. Recommendations
for improvement can be provided to a player based on these
insights.

Fig. 6. Consistency of a shot type based on Deviation from Ideal-Shots

C. Recommendation on wrist rotation

The optimal matching path calculated between a test
shot and the template which classified the shot at second
level is also used to suggest certain recommendations to a



player. As QDTW is a time warping technique, it matches
paths with different speeds also and this fact is used for
recommendations. From Fig. 7, it can be visualized that the
region marked in green is the QDTW matching path between
two shots – professional’s shot samples along vertical axis
and subject player’s shot samples along the horizontal axis
and the various regions in a professional’s shot are also
marked. A horizontal region of the matching path represents
that the subject player is slower in a region, whereas the
vertical region shows that the subject is faster and a diagonal
region shows exact matching to the professional’s change in
wrist orientation during the shot. Such insights may also help
the player to look into how to vary his wrist orientation as
the shot progresses.

Fig. 7. Q-distance Matrix: Insights for Improvement

VI. EXPERIMENTAL SETUP AND RESULTS

We have used Samsung smart watch Gear S to capture
and store sensor values during tennis sessions. The analysis
of this data was done on a smartphone which receives
streamed sensor data from the Gear S. The wearable has 3-
axes accelerometer with range of ±8g and 3-axes gyroscope
with range of ±2000 degrees/s. The sampling rate of the
sensors was 25 Hz. Tennis professionals and novice players
were requested to play a fixed number of shots of each shot
type for training and testing purpose.

The average accuracy of Shot Detection module is >99%.
The details are shown in Table II for players with varying
skill levels.

TABLE II : SHOT DETECTION ACCURACY

Player Type # shots played # shots detected Accuracy (%)
Professionals 2676 2665 99.58

Novice 1060 1049 98.96
Total 3736 3714 99.41

To test the classifier, we input X test shots of a shot type x
and look at the true positives, say Y reported by the classifier
and define accuracy as, accuracy = (Y/X) ∗ 100.

TABLE III : QDTW CLASSIFIER ACCURACY

Classifier Levels Professional players Novice Players
First Level(DTW) 99.6 99.3

Second Level(QDTW) 90.7 86.2

The average accuracy at two levels of the classifier -
first level (Forehand, Backhand, and Serve) and second

level (Non-slice i.e. flat and topspin and Slice shots) for
professional and novice players is given in Table III. The
accuracy is based on ∼1000 number of shots used in the
training set (from 5 professional players) and ∼1800 number
of shots (from 9 subject players) used for testing purposes.
We are continuously adding new data to our datasets.

VII. CONCLUSION

We have described the techniques for efficient detection
of tennis shots and their classification into various shot
types based on sensors embedded in wrist-worn wearable.
Further, we have proposed a novel approach for calculating
the racquet speed around ball impact using only inertial
sensor data from wrist. We also analyzed player’s game
and provided basic recommendations for improvement. If
opponent data is also available in real time, additional
features like return shot type and time-line can be derived
using statistical analysis of synchronized sensor data from
wearables of both players. This can help the player to
analyze game against opponent with specific playing style
or skill level. Trends of this analysis over a few sessions
can be useful in building strategies and improving game
in different playing environments. In the future we plan to
provide complete self-learning and/or coach-assisted training
by extending our recommendation system and also providing
a collaborative learning environment based on ranking etc.
among groups of tennis players.
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